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Strong solitary internal waves in
a 2.5-layer model
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A theoretical model for internal solitary waves for stratification consisting of two
layers of incompressible fluid with a constant Brunt–Väisälä frequency and a density
jump at the boundary between layers (‘2.5-layer model’) is presented. The equation
of motion for solitary waves in the case of a constant Brunt–Väisälä frequency N
is linear, and nonlinearity appears due only to boundary conditions between layers.
This allows one to obtain in the case of long waves a single ordinary differential
equation for an internal solitary wave profile. In the case of nearly homogeneous
layers the solitons obtained here coincide with the solitons calculated by Choi &
Camassa (1999), and in the weakly nonlinear case they reduce to KdV solitons. In the
general situation strong 2.5-layer solitons can correspond to higher modes. Sufficiently
strong solitons could also possess a recirculating core (at least, as a formal solution).

The model was applied to the data collected during the COPE experiment. The
results are in reasonable agreement with experimental data.

1. Introduction
‘Weak’ solitary internal waves (which we will also be calling solitons) with ampli-

tudes significantly less than a characteristic vertical scale of stratification, depending
on the situation, are adequately described by KdV, modified KdV (CombKdV),
Benjamin–Ono, or Joseph equations (Ostrovsky & Stepanyants 1989). ‘Strong’ soli-
tons with amplitudes of the order of or larger than the characteristic vertical scale
of stratification are often observed experimentally and are also of interest. Strong
solitons have been investigated in a number of studies (Benney & Ko 1978; Amick
& Turner 1986; Turner & Vanden-Broeck 1988; Evans & Ford 1996; Derzho &
Grimshaw 1997; Torez & Knio 1998; Brown & Christie 1998; Grue et al. 1999)
and in a recent work by Choi & Camassa (1999), in particular. It seems, however,
that analytical results were, in most cases, obtained for the model of two layers
of homogeneous fluid with different densities or for stratifications close to constant
Brunt–Väisälä frequency profile. In geophysical applications, fluid layers often have a
density gradient and could be better described by layers with different Brunt–Väisälä
frequencies that are constant within the layers. Fluid motion in such a system is not
potential; however, similar to potential surface gravity waves, it is also described by
a linear equation, and nonlinearity arises from boundary conditions between layers
only. This allows one, in different limiting cases, to express an equation describing
such solitons in terms of displacement of the boundary between layers only.

We use the somewhat loose term ‘2.5-layered fluid’ here to describe a model con-
sisting of two layers of incompressible fluid with constant Brunt–Väisälä frequencies
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N1 and N2 and a finite density jump ∆ρ at the boundary between layers. This model
can be considered as an appropriate limiting case of a three-layer fluid when the
width of the intermediate layer d tends to zero, while the product g∆ρ ∼ N2d remains
finite. In summary, equilibrium density stratification ρ0(z) is assumed here to be as
follows:

ρ0(z) =

{
ρ2 −N2

2z/g, 0 < z < H2

ρ1 −N2
1z/g, H1 < z < 0,

(1.1)

where ρ1, ρ2 ≈ 1, and H1 < 0 and H2 > 0 represent thicknesses of the lower and upper
layers, respectively. For simplicity, density is made dimensionless by normalizing it by
a constant reference value ρ00 = 1 g cm−3.

2. Governing equations
Let us consider a stationary case when all quantities characterizing the motion are

functions of x−ct, where c is a constant propagation speed, and vertical coordinate z.
Moreover, we will be studying solutions corresponding to solitary waves only, when
all perturbations tend to zero at infinity. A reduction of the equations of motion
for this case was obtained first by Dubreil-Jacotin (1937) and later also by Long
(1953). The result (which can be easily checked by direct substitution) is as follows.
Let Ψ be a stream function defining velocities according to the relations: vx = −Ψz ,
vz = Ψx. Here the solitary waves boundary condition Ψ → 0, |x| → ∞ is assumed to
be fulfilled. Then

ρ = ρ0

(
z +

Ψ

c

)
, (2.1)

where ρ0(z) is the equilibrium density profile: ρ→ ρ0(z), |x| → ∞. The equation of
two-dimensional motion of inviscid incompressible fluid taken in the Boussinesq
approximation (i.e. density variations are taken into account only in the buoyancy
term) is

Ψxx +Ψzz +
Ψ

c2
N2

0

(
z +

Ψ

c

)
= 0, (2.2)

where

N2
0 (z) = −gρ′0(z) (2.3)

is a Brunt–Väisälä frequency. An expression for pressure p normalized by ρ00 (so that
the dimension of p here is the square of the velocity) is

p = −cΨz − Ψ 2
x +Ψ 2

z

2
−
∫ z+Ψ/c

z

(ξ − z)N2
0 (ξ) dξ −

∫ z

0

gρ0(ξ) dξ. (2.4)

The kinematic boundary condition at the layer boundary z = h(x) is

h+
1

c
Ψ (x, h) = 0. (2.5)

By differentiating this equation, we find

hx =
Ψx

−c−Ψz

. (2.6)

Thus, the total velocity vector at the boundary in the frame of reference moving with
the soliton speed is tangent to the boundary profile, as it should be in the stationary
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case. Similarly, at the other boundary z = H (ocean bottom for the first layer and
ocean surface for the second layer)

Ψ |z=H = 0. (2.7)

Using (2.5) and (2.6) in (2.4), we obtain the following expression for the pressure
at the boundary:

p = − 1
2

(1 + h2
x) (c+Ψz)

2 − gρh+ 1
2
c2, (2.8)

where ρ = ρ0(0). This expression can be applied to both layers. Continuity of pressure
at the boundary between layers gives

− 1
2

(1 + h2
x) (c+Ψ1z)

2 + 1
2

(1 + h2
x) (c+Ψ2z)

2 − g∆ρh = 0, (2.9)

where

∆ρ = ρ1 − ρ2 � 1 (2.10)

and Ψ1 and Ψ2 correspond to stream functions in the first (lower) and the second
(upper) layers. Derivatives Ψ1z and Ψ2z in (2.9) should be calculated at the boundary
points z = h(x).

In what follows we will be considering the case when Brunt–Väisälä frequency is
constant within a given layer: N0(z) = N = const. Then Ψ1z and Ψ2z are functionals
of the solitary wave profile h(x), which are determined through the solution of the
linear (Helmholtz) equation

Ψxx +Ψzz +
N2

c2
Ψ = 0 (2.11)

subject to boundary conditions (2.5) and (2.7). When Ψ1z and Ψ2z are expressed in
terms of h, (2.9) becomes a basic equation describing a soliton profile for the 2.5-layer
model. In the next section we will consider the case of long waves, allowing a simple
approximate analytical treatment.

3. Long-wave limit
The solution of the linear equation (2.11) with boundary conditions (2.5) and (2.7)

can be easily calculated in the limit of long waves. Let soliton slope ε = |h0|/wx � 1,
where h0 is soliton amplitude and wx is the spatial width of the soliton in the horizontal
direction. In this case the term Ψxx in (2.11) is small, O(ε2), and this equation can be
readily solved by iterations:

Ψ (x, z) = −c h

sin θ
sin

[
N

c
(z −H)

]
+

c3

2N2

(
h

sin θ

)
xx

×
{
−N
c

(z −H) cos

[
N

c
(z −H)

]
+ θ cot θ sin

[
N

c
(z −H)

]}
+ o(ε2), (3.1)

where

θ = θ(x) =
N

c
(h(x)−H). (3.2)

The first term in (3.1) appears to be a solution of (2.11) with Ψxx term neglected, and
the second term is a result of the first iteration. Boundary conditions (2.5) and (2.7)
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are obviously satisfied. From (3.1) we find

Ψz|z=h = −N cot θh+
c2

2N

(
h

sin θ

)
xx

(
θ

sin θ
− cos θ

)
. (3.3)

Here, N and H could correspond to either layer. If expression (3.3) is substituted
into (2.9) we obtain to the accuracy of O(ε2) the following equation describing soliton
profile in a 2.5-layer model:

A(h)hxx + B(h)h2
x + C(h) = 0, (3.4)

where expressions for coefficients A,B, and C are as follows:

A(h) = − c3

2N1

(
1− cot θ1

N1

c
h

)2(
θ1

sin2 θ1

− cot θ1

)

+
c3

2N2

(
1− cot θ2

N2

c
h

)2(
θ2

sin2 θ2

− cot θ2

)
, (3.5)

B(h) = −c
2

2

(
1− cot θ1

N1

c
h

)2{
1 +

(
θ1

sin2 θ1

− cot θ1

)

×
[
(2 cot2 θ1 + 1)

N1

c
h− 2 cot θ1

]}
+
c2

2

(
1− cot θ2

N2

c
h

)2

×
{

1 +

(
θ2

sin2 θ2

− cot θ2

)[
(2 cot2 θ2 + 1)

N2

c
h− 2 cot θ2

]}
, (3.6)

C(h) = −c
2

2

(
1− cot θ1

N1

c
h

)2

+
c2

2

(
1− cot θ2

N2

c
h

)2

− g∆ρh. (3.7)

Here

θ1 =
N1

c
(h−H1), θ2 =

N2

c
(h−H2).

Multiplying (3.4) by R(h)hx, where function R:

R(h) =
1

A(h)
exp

(
2

∫ h

0

B(h′)
A(h′)

dh′
)
, (3.8)

satisfies the equation (RA)′ = 2BR, (3.4) reduces to the equation describing zero-
energy particle motion in a potential well:

1
2
h2
x +U(h) = 0, (3.9)

where

U(h) =
1

R(h)A(h)

∫ h

0

R(h′)C(h′) dh′. (3.10)

Note that at small h, C(h) ∼ h and U ∼ h2. To obtain solutions corresponding to
solitary waves, it is clearly required that

U ′′(h)|h=0 =
C ′(h)
A(h)

∣∣∣∣
h=0

< 0. (3.11)

An example of the dependence of U ′′(0) on c is shown on figure 1(a). Also, potential
U(h) must have a simple root at some point h = h0, where h0 is a soliton amplitude
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Figure 1. (a) The dependence of U ′′(0) on propagagtion speed c. (b) The dependence of soliton
speed on its amplitude.

which generally depends on its velocity. Let us specify the spatial width of the soliton
wx at the level h = h0/2:

wx = 2

∫ h0/2

h0

dh′√−2U(h′)
. (3.12)

The temporal width of the soliton which can be directly compared against point
measurements is wt = wx/c.

4. The case of weakly inhomogeneous layers
Let us consider equation (3.9) for weakly inhomogeneous layers, when

N1|H1|/c << 1, N2H2/c << 1. (4.1)

It is easy to see that in the limit N1 → 0, N2 → 0 the expressions for coefficients
A,B, C, (3.5)–(3.7), reduce to

A(h) =
1

3

(
− c2H2

1

h−H1

+
c2H2

2

h−H2

)
, (4.2)

B(h) =
1

6

c2H2
1

(h−H1)
2
− 1

6

c2H2
2

(h−H2)
2
, (4.3)

C(h) = −1

2

c2H2
1

(h−H1)2
+

1

2

c2H2
2

(h−H2)2
− g∆ρh. (4.4)

Hence, in this case B = A′/2, R = 1, and after simple calculations it follows that

U(h) = −3

2

g∆ρ(h−H2)(h−H1)/c
2 +H2 −H1

H2
2 (h−H1)−H2

1 (h−H2)
h2. (4.5)

Equation (3.9) with potential U(h) given by (4.5) coincides with the equation for
solitary waves obtained by Choi & Camassa if the Boussinesq approximation is
applied to their more general result (see (3.50) in Choi & Camassa 1999) and, as
they pointed out, also by Miyata (1985). Properties of corresponding solitons are
investigated in detail in Choi & Camassa (1999). Note that the case H1 = H2, which
is degenerate for weakly stratified fluid A = B = C = 0, is a regular case in a generic
situation.
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The case of a homogeneous layer N = 0 with a current with a constant shear
can be treated similarly to the above. It also leads to an equation like (3.9) with the
expression for the potential U being ratio of the third- and the fifth-order polynomials
with respect to h (cf. (4.5)).

5. Weakly nonlinear case
Let us assume now that the soliton amplitude is small: h0 → 0. In this case the

width of the soliton increases: wx → ∞ and its propagation speed tends to the phase
speed cL corresponding to long, linear waves: c → cL. This speed is determined by
solution of the following linear boundary problem:

ϕzz +
N2

1

c2
L

ϕ = 0, z < 0; ϕzz +
N2

2

c2
L

ϕ = 0, z > 0; (5.1)

ϕz|z=+0
z=−0 +

g∆ρ

c2
L

ϕ(0) = 0; ϕ(H1) = ϕ(H2) = 0. (5.2)

Eigenfunctions ϕ are assumed to be normalized according to the condition maxϕ = 1.
In the limit h→ 0 potential U(h) from (3.11) becomes

U(h) ≈ U ′′(0)h2

2
=

C ′0
2A0

h2, (5.3)

where lower index 0 indicates the limit h = 0. Thus, to obtain wx →∞ requires

C ′0(cL) = 0. (5.4)

Substituting (3.7) into (5.4) one obtains

−cLN1 cot

(
N1

cL
H1

)
+ cLN2 cot

(
N2

cL
H2

)
− g∆ρ = 0. (5.5)

It is easy to check that the equation for cL following from the boundary problem (5.1)
and (5.2) does coincide with (5.5).

Soliton speed c in the weakly nonlinear case is close to cL to the accuracy of O(h0).
Taking this into account, we can approximate potential U given by (3.10) and (3.8)
to the accuracy of terms of O(h3

0) as follows:

U(h) =
1

2A0

(
∂C ′0
∂c

)
c=cL

(c− cL)h2 +
C ′′0
6A0

h3 + o(h3
0). (5.6)

Let us compare this limit with the result following from the KdV equation. In the
latter case

ht + cLhx + αhhx + βhxxx = 0, (5.7)

where

α =
3cL
2

∫ H2

H1

ϕ3
z dz

(∫ H2

H1

ϕ2
z dz

)−1

, β =
cL

2

∫ H2

H1

ϕ2 dz

(∫ H2

H1

ϕ2
z dz

)−1

(5.8)

(see e.g. Ostrovsky & Stepanyants 1989). Considering the stationary solution of (5.7)
we find

h2
x

2
− c− cL

2β
h2 +

α

6β
h3 = 0. (5.9)
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One can check by a direct calculation that

− 1

β
=

1

A0

(
∂C ′0
∂c

)
c=cL

,
α

β
=
C ′′0
A0

. (5.10)

Comparing (5.9) with (5.6) and taking into account (5.10) demonstrates that the
weakly nonlinear solitons defined by (3.4)–(3.7) coincide with KdV solitons for the
stratification (1.1).

6. Comparison with the experiment
Large-amplitude internal solitary waves were measured in the COPE experi-

ment (Coastal Ocean Probing Experiment), off the Oregon coast in 1995 (Stanton
& Ostrovsky 1998). The stratification at one of the measurement sites can be
approximated by a homogeneous sub-surface layer about H2 ≈ 6 m thick, a sharp
thermocline with overall density jump throughout it of ∆ρ ≈ 0.003 and a layer
−H1 = 144 m thick with an approximately constant Brunt–Väisälä frequency of
N1 = 0.012 s−1. A theoretical description of the observed solitons suggested in
Stanton & Ostrovsky (1998) was based on a modified KdV equation (‘CombKdV’).
The solitons calculated according to this model had limiting amplitude −h0 ≈
21 m (since soliton profiles represent a depression their amplitude h0 is negative)
and propagation velocity c = 0.72 m s−1 (a long linear wave has c = 0.60 m s−1).
Observed solitons typically had amplitudes in the range −h0 ∼ 5 m − 20 m and
occasionally reached amplitudes of −h0 ≈ 30 m. According to radar measurements,
typical velocities of solitons were c = 0.85 m s−1. Those values are in a fair agree-
ment with theoretical predictions, especially if one takes into account that the
CombKdV model still requires small nonlinearity (i.e. soliton amplitude should be
small compared to the vertical scale of stratification, which is H2 ≈ 6 m in our
case).

In this section, we will apply the model developed in the previous section to solitons
observed in COPE. Calculations according to (3.10) and (3.12) with the stratification
parameters mentioned above were performed numerically. The dependence of soliton
speed on its amplitude is shown on figure 1(b).

The previously mentioned typical propagation speed of c = 0.85 m s−1 corresponds
to the amplitude −h0 ≈ 16 m, which is in the middle of the range of observed
amplitudes. Figure 2(a) shows the dependence of the temporal soliton width wt on
its amplitude. Experimental data from COPE are also shown on the plot by symbols
(taken from figure 4(a) of Stanton & Ostrovsky 1998).

One can see that the experimental data on soliton width exhibit some scattering.
This could be due to the fact that not all large-amplitude internal waves observed
corresponded to pure solitary waves and were, rather, in the evolution stage. Also,
small-amplitude solitons are difficult to separate from the background ‘noise’. The
theoretical curve corresponds to the upper limit of the temporal widths observed
and generally is in reasonable agreement with the data for stronger solitons. Fig-
ure 2(b) shows a profile corresponding to a soliton with −h0 = 26 m (c = 0.98 m s−1).
Experimental points (taken from figure 5 of Stanton & Ostrovsky 1998) are in good
agreement with theoretical curve.

Note that our calculations predict a soliton of maximal amplitude −h0 ≈ 70 m
(close to the limiting amplitude of a soliton due to the Choi & Camassa theory)
propagating with a speed of c = 1.185 m s−1.
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Figure 2. (a) The dependence of soliton temporal width wt on its amplitude. (b) Soliton profile.
Symbols correspond to COPE data, which are taken from figures 4(a) and 5 of Stanton & Ostrovsky
1998, respectively.

7. Higher-mode solitons and recirculating core
The solution for a strong stratification case described in the previous section

could in principle correspond to higher-mode internal waves as well. It is interesting
to investigate the possibility of higher-mode solitons for the case of the COPE
stratification. As mentioned, a necessary condition for the existence of a solitary wave
is given by (3.11). The dependence of U ′′(0) on propagation speed c is plotted on
figure 1(a). Solitons calculated in the previous section corresponded to the region
c > 0.6 m s−1. One can see that solitary waves could also exist for velocities between
approximately 0.4 m s−1 and 0.55 m s−1, where U ′′(0) becomes negative again. This
is the case, and numerical calculations show that a soliton with c = 0.45 m s−1

does exist. This soliton can be considered as a second-mode solitary wave, since
the overall phase increase throughout the lower layer depth reaches, in this case,
N1H1/c ∼ 3.84 > π. However, its amplitude appears to be very small and the width
rather large: −h0 ≈ 2.8 m, wx ≈ 275 m, wt ≈ 612 s. Such a soliton is difficult to observe
in the presence of background internal waves.

A more pronounced higher-mode soliton appears if one decreases the density jump
at the boundary between layers to ∆ρ = 0.001, keeping the rest of the stratification
parameters the same. Then a soliton with propagation speed c = 0.39 m s−1 has an
amplitude of −h0 ≈ 15.3 m. The overall variation of phase in the lower layer reaches
in this case N1H1/c ∼ 3.84. This second-mode soliton also has limiting amplitude
which, according to our numerical simulations, is about −h0 ≈ 17.7 m.

From the general expression for stream function (3.1) with the higher-order terms
neglected one can easily see that for the denominator to be non-zero at all x, a soliton
profile must be ‘squeezed’ between appropriate zeros of a function sin(N/c)(z −H)).
For weakly nonlinear solitons, when c in this expression can be replaced by cL, one
finds that the soliton profile should be located between zeros of a long-wave linear
mode. This can significantly limit soliton amplitude, especially for higher modes.
Generally, the following restriction on soliton amplitude holds:

N|h0|/c < π. (7.1)

Another interesting question is the existence of a soliton recirculating core, i.e.
closed flow lines (Tung, Chan & Kubota 1982; Derzho & Grimshaw 1997; Brown &
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Christie 1998). The fluid entrained within those lines will propagate with the soliton.
An example of such a soliton is shown in figure 3. This soliton is calculated for a
hypothetical stratification with the following parameters: N1 = 0, N2 = 0.01 s−1, H1 =
−50 m, H2 = 100 m,∆ρ = 0. Soliton speed is c = 0.235 m s−1 and a soliton amplitude
is h0 = −39.2 m. Analytical investigation of the conditions under which the core
appears is difficult. It is required that the equation Ψz + c = 0 has a root at x = 0
(centre of the soliton). Substituting into this equation the representation for Ψ , (3.1),
with the higher-order term neglected gives

−Nh0 cos

(
N

c
(z −H)

)/
sin

(
N

c
(h0 −H)

)
+ c = 0. (7.2)

The necessary condition for this equation to have a root at some z ∈ (h0, H) is∣∣∣∣Nh0

c

/
sin

(
N

c
(h0 −H)

)∣∣∣∣ > 1. (7.3)

Thus, the soliton must have sufficiently large amplitude.
However, physical realizability of these solutions is unclear. On one hand, solitons

with a recirculating core are not defined uniquely, since an arbitrary function can
be substituted into the right-hand side of (2.2) for the stream lines inside the core.
Selection of a unique solution should be based on taking account of small viscosity or
initial conditions in this case. On the other hand, solutions of (2.2) with a recirculating
core corresponding to zero right-hand side calculated numerically by Tung et al. (1982)
appeared to correspond well to the experimental results by Davis & Acrivos (1967).

8. Conclusions
A theory is presented for the description of the internal solitary waves for a

stratification consisting of two layers with a constant Brunt–Väisälä frequency within
layers and a density jump at the boundary between them (a ‘2.5-layer model’). The
theory makes use of the Boussinesq approximation. In the weakly nonlinear case the
solitons obtained reduce to the KdV solitons. For nearly homogeneous layers they
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coincide with the solitons calculated by Choi & Camassa (within the Boussinesq
approximation).

In the general case the solitons calculated here could correspond to higher modes.
If the soliton amplitude is large enough, they can also possess a recirculating core,
which consists of entrained portions of fluid propagating with the soliton. The physical
significance of those solutions is, however, unclear at this point.

The theory is applied to the case of internal wave solitons measured in the COPE
experiment, and the results of the theoretical calculations are in reasonable agreement
with the measurements.

The author is grateful to Professor L. A. Ostrovsky for numerous stimulating
discussions. The author is also indebted to two reviewers: one made a suggestion
that led to a significant simplification and improvement of the derivation; the other
suggested analysing the existence of the recirculating core in the internal wave solitons.
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